TP1 n°1-2 : Installation GNU/LInux

Debian 10 Buster NetInstall (les consignes en rouge sont optionnelles) :

- 1. Téléchargement de l'image iso d'installation par le réseau :
 - Normalement, télécharger l'image officielle sur la page https:// www.debian.org/releases/buster/debian-installer/
 - Sur vos poste de travail sous Linux : /home/VBox/iso/debian-10.10.0amd64-netinst.iso
- 2. Boot Linux / Login : rt | password : rt
 - Network : 10.4.105.0/24
 Gateway : 10.4.105.254
 DNS : 10.4.105.251
 - IP PC : 10.4.105.1-16
 - IP Vbox DHCP : 10.4.105.20-59
 - IP "libres" : 10.4.105.80-97
- 3. Récupération d'une adresse MAC valide sur une machine virtuelle existante (VirtualBox)

Ouvrir un Terminal et lancer le script « **createvm** » Copier la ligne de commande de l'aide et l'exécutée (détruire ensuite cette machine)

4. Lancer VirtualBox puis créez machine virtuelle avec comme paramètres :

- Nom :
 - TP-R&T-LP CYBER à ne pas détruire
 - TP-R&T-LP AZURA à ne pas détruire
 - TP-R&T-LP AZURB à ne pas détruire
- Type : Linux
- Version : Debian (64-bit)
- Taille de la mémoire : 4096MB
- Disque dur : Créer un disque virtuel
- Type de fichier du disque dur : VDI
- Stockage sur disque dur physique : Dynamiquement alloué
- Taille de 4GB
- Configuration réseau :
 - Mode d'accès réseau : Accès par pont sur « eth1 »
 - Dans « Avancé » : copier l'adresse MAC (récupérée ci-dessus)
- Stockage : au niveau du lecteur optique (i.e. CD-ROM) choisir l'image au préalable téléchargée
 - debian-10.10.0-amd64-netinst.iso
 - pour le démarrage en mode installation...
- 5. Type d'installation : « Advanced options => Expert install » (i.e. non graphique)
 - Choose language : French

- Pays : France
- Locales : France fr_FR.UTF-8
- Configurer le clavier : Français
- Détecter et monter le CD et Charger des composants d'installation à partir du CD
- Composant d'installation à charger :
 - 1. choose-mirror
 - 2. network-console
- Détecter le matériel réseau
- Configurer le réseau : DHPC
 - Si l'allocation DHCP échoue :
 - Network : IP PC + 20 : 10.4.105.21-37/24 => 10.4.105.21-37/255.255.255.0
 - Gateway : 10.4.105.254
 - DNS : 10.4.105.251
- Nom de machine : rt-lp-tp
- Domaine : assr.iut.univ-cotedazur.fr
- Choisir un miroir de l'archive Debian
 - Protocole : http
 - Pays : France
 - Miroir : ftp.lip6.fr
- Créer les utilisateurs et choisir les mots de passe
 - Activer les mots de passe cachés
 - Autoriser les connexions superutilisateur
 - Mot de passe du superutilisateur « root » : root
- Créer un compte d'utilisateur ordinaire :
 - Nom complet du nouvelle utilisateur : manager
 - Identifiant pour le compte utilisateur : manager
 - Mot de passe pour le nouvel utilisateur : manager
- Configurer l'horloge (important) :
 - Utilisation de NTP (Network Time Protocol : serveurs de temps)
 - Europe/Paris
- Détecter les disques
- Partitionner les disques :
 - Méthode de partitionnement : Manuel
 - Sélectionner : SCSI2 (0;0,0) (sda) 4.3 GB ATA VBOX HARDDISK
 - Créer une nouvelle table des partitions
 - Type de la table des partitions : **gpt**
 - Créer une nouvelle partition
 - Partitions (dans l'ordre Début) :
 - (/dev/sda1) point de montage / : 3.0 GB en ext4 (pas de nom)
 - (/dev/sda2) partition d'échange (i.e. swap) : 200MB
 - (/dev/sda3) point de montage /tmp : 500MB en ext4 (pas de nom)
 - (/dev/sda4) point de montage /home : tout le reste en ext4

(pas de nom)

- Terminer le partitionnement et appliquer les changements
- Installer le système de base :
 - Noyau à installer : linux-image-amd64
 - Pilotes : image générique
- Configurer l'outil de gestion des paquets :
 - Services à utiliser :
 - mises à jour de sécurité
 - mises à jour de la publication
 - Utilisation des paquets "libres" et des "contributions"
- Choisir et installer les logiciels :
 - Utilitaires usuels du système (pas de SSH)
 - Pas de mises à jour automatique
 - Pas de participation à l'étude statistique...
- Installer le programme de démarrage GRUB...
 - Installer le programme de démarrage GRUB sur le secteur d'amorçage
 - /dev/sda
 - supports amovibles EFI : Non
- Terminier l'installation
 - heure universelle (UTC) : Oui
- Redémarrage...

6. Login : root

// Quel utilisateur suis-je :

id

uid=0(root) gid=0(root) groupes=0(root)

- Mise à jour de la liste de paquet disponibles :
 - # cd /etc/apt/
 - # cat sources.list
 - # more sources.list
 - # nano sources.list (c.f. screen shoot)
 - # apt-get update
- Mises à jour de sécurité : # apt-get upgrade
- Installation de l'utilitaire « aptitude » :
 # apt-get install aptitude
- Modification des paramètres réseaux : <u>https://wiki.debian.org/fr/</u> <u>NetworkConfiguration</u>
 - # cd /etc/network
 - # cp interfaces interfaces.dhcp
 - // man interfaces
 - // Arrêt du service réseau :

systemctl stop networking.service

- Modifier la configuration « DHCP » existante en configuration « statique »
 - (commenter les 2 lignes relatives à la configuration DHCP

existante)

pour cela relever vos paramètres réseaux :

- adresse IP : ip addr show
 (i.e. 10.4.110.14/24)
- passerelle (i.e. gateway) : ip route show (i.e. 10.4.110.254)
- serveurs de nom (DNS) : cat /etc/resolv.conf
- « man interfaces » pour la syntaxe (c.f. screen shot)
- # vi ou nano /etc/network/interfaces
- Démarrage du service réseau :
 # systemctl stop networking.service
 # systemctl start networking.service
 # ifdown votre_interface
 # ifup votre interface
- Vérifier que votre nouvelle configuration réseau est fonctionnelle : # ping 8.8.8.8

ping -4 www.google.fr

- Résolution « locale » des noms de domaine : # cat /etc/hosts
- Reconfiguration de certains paquets ou paramètres :
 - // Locales (exemple, ne pas faire)
 - # dpkg-reconfigure locales
 - // Time Zone (exemple, ne pas faire)
 - # dpkg-reconfigure tzdata
 - // Console (exemple, ne pas faire)
 - # dpkg-reconfigure console-setup
 - // Keyboard (exemple, ne pas faire)
 - # dpkg-reconfigure keyboard-configuration
 - // Shell par défaut (à faire)
 - # whereis sh
 - # ls -lsa /usr/bin/sh
 - # dpkg-reconfigure dash
 - (répondre **non**)
- Arrêt du système :
 - // Arrêt du sytème
 - # shutdown -h now
 - // Redémarrage du système
 - # shutdown -r now
- Configuration :
 - 2 ou 3 CPU

Puis redémarrage...

• Système de fichier ZFS :

- https://fr.wikipedia.org/wiki/ZFS
- http://www.open-zfs.org/wiki/Main_Page
- http://open-zfs.org/wiki/System_Administration

- http://docs.oracle.com/cd/E19253-01/819-5461/
- Installation du système de fichier « zfs » :
 - # aptitude search zfs
 - vi ou nano de /etc/apt/sources.list : ajouter un composant « contrib » derrière « main » sur toute les lignes...
 - Refaire une mise à jour de la liste des paquets disponibles :
 - # aptitude update
 - # aptitude upgrade
 - # aptitude search zfs
 - Installation du module noyau (compilation) relatif au système de partition « zfs » et de ses utilitaires :
 - # aptitude install zfs-dkms
 - # find /lib/modules/ -name "*zfs*"
 - # zfs list
 - // Erreur !
 - // Chargement du module noyau zfs
 - # modprobe zfs
 - // modprobe -r zfs (pour le décharger)
 - // Vérification :
 - # zfs list
 - // Installation des utilitaires...
 - # (aptitude install zfsutils-linux zfs-zed)
 - partitions actuelles du système : # fdisk -l
 - Création d'un pool de stockage « zfs » avec la partition /dev/ sda4 :

// Déplacer le dossier de l'utilisateur « manager » qui est dans / home

mv /home/manager /tmp/

- // Démonter la partition /dev/sda4 correpondant à /home
- # umount /home
- // Création du pool de stockage
- # zpool create -f home /dev/sda4
 - problème éventuel de version du noyau en cours d'exécution :
 # uname -a
 - (comparer la version du noyau avec la version du module noyau ifs.ko compilée)
 - # find /lib/modules/ -name « *zfs* »
 - et si nécessaire redémarrer le système après avoir effectuer une éventuelle mise à jour...

modprobe zfs

- Utilisation du dossier /home comme point de montage du pool zfs :
 => Déplacement « temporaire » du dossier racine de l'utilisateur
 - « manager » :
 - # ls -lsa /home
 - # usermod -m -d /tmp/manager manager

Is -Isa /home

zpool create home -f /dev/sda4

// Liste des pool zfs existant :

zpool list

// status des pools :

zpool status

// Liste des partitions

df -h

// Création d'une autre partition (dataset) « zfs » :

zfs create home/data

// Liste des partitions zfs existantes :

zfs list

// En cas d'erreur sur le nom de la partition créée, on peut renommer :

zfs rename home/data home/users

// Création d'une partition video sous /home/ :

zfs create home/video

// Ensemble des propriétés d'une partition zfs :

zfs get all home/users | more

// Une propriété en particulier :

zfs get compression home/users

// Remettre en place le dossier racine de manager dans /home/ users/

usermod -m -d /home/users/manager manager

Is -Isa /home/users/manager/

mkdir /home/manager

Is -Isa /home/manager/

grep manager /etc/passwd

// Changement du propriétaire et du groupe du dossier

« manager » :

chown 1000:1000 /home/manager

// ou

chown manager:manager /home/manager

Is -Isa /home/manager

// Installation d'un utilitaire de synchronisation d'un système de fichiers : rsync

aptitude install -y rsync

man rsync

rsync -auv /home/users/manager/ /home/manager/

// Nouvelle modification du dossier racine de manager

usermod -d /home/manager manager

// Destruction de l'ancien dossier racine

cd /home/users/

// Attention !!!

\rm -r manager

// Sortir de la session utilisateur

exit

• Vous loger comme « manager » (TP2)

id

- // Processus du système
 - # top
 - # ps aux
 - // Installer htop et lsof
 - # aptitude install -y htop lsof
 - // Substitution d'utilisateur

su - root

- # aptitude install -y htop lsof
- // Processus

htop

- // Liste de l'ensemble des fichiers ouverts du système
- # Isof | more
- // Liste des fichiers ouverts par manager

lsof -u manager | more

- // Liste des fichiers ouverts par un processus
- # lsof -p pid_number

// On redevient manager

exit

- // Créer un fichier de 100MB ne contenant que des zeros : # id
 - # df -h
 - // Création d'un fichier de 100MB avec des 0 dedans !
 - # dd if=/dev/zero of=100MB count=200000
 - // Vérifier la taille du fichier 100MB :
 - # du -h 100MB
 - // Ce qu'il y a dedans
 - # hexdump -C 100MB

df -h

// Se mettre « root »

su - root

- // Activation de la compression
- # zfs set compression=on home
- # zfs get compression -r home
- # zfs set compression=off home/video

exit

- Créer un nouveau fichier de 100MB :
- # dd if=/dev/zero of=100MB.new count=200000
- # dd if=/dev/zero of=100MB.new count=100000 bs=1024
- # du -h 100MB*
- # du -b -h 100MB*
- # rm 100MB
- // Obsolète sur partition de type GPT

```
# dd if=/dev/sda of=MBR.bck count=1 bs=512
```

Vous pouvez constater que le gain de place est tout particulièrement significatif dans le cas présent...

- Création, destruction et modification de nouveaux groupes et utilisateurs
 - Pour faciliter les choses !!!
 # aptitude install openssh-server // Mon IP
 # ip addr
 - Sur la machine "hôte", ouvrir un Terminal (Linux) ou un PowerShell (Windows)

ssh manager@{ip_virtual_machine}

- Définition d'un nouveau groupe avec un « nom » et un « identifiant de groupe (un entier) » : (nom, gid)
- man groupadd
- 2 nouveaux groupes avec les paramètres suivants :

// Substitution d'utilisateur => roor

su - root

- (cat, 2000)

groupadd -g 2000 cat

- (mouse, 3000)
 # groupadd -g 3000 mouse
 // Fichier système /etc/group
 # cat /etc/group
- Définition d'un nouvel utilisateur avec son nom, « identifiant d'utilisateur » (un entier), « dossier racine », « shell » : (nom, uid, gid, « dossier racine », shell) :

man useradd

par exemple pour le super utilisateur : (root, 0, 0, /root, /bin/bash)

- 2 nouveaux utilisateur avec les paramètres suivants :
 - (tom, 2000, 2000, /home/users/tom, /bin/bash)
 # useradd -u 2000 -g 2000 -m -d /home/users/tom -c 'Tom le chat' -s /bin/bash tom
 # passwd tom

```
passwd tom
(jerry, 3000, 3000, /home/users/jerry, /bin/bash)
# useradd -u 3000 -g 3000 -m -d /home/users/jerry -c 'Jerry la souris' -s /bin/bash jerry
# passwd jerry
// Changement des mots de passe de plusieurs utilisateurs
# cat << _EOS_ | chpasswd</li>
jerry:jerry3
tom:tom2
_EOS_
# cat << _EOS_ > passwd.data
jerry:jerry
tom:tom
_EOS_
```

- # more passwd.data
- # cat passwd.data | chpasswd
- # chpasswd < passwd.data</pre>
- Nouveaux utilisateurs : (AZUR A 2021 TP1) # cat /etc/passwd # egrep -e '(tom|jerry)' /etc/passwd
- Les mots de passe chiffrés sont sauvegardés dans : # cat /etc/shadow
- $\circ~$ Droits sur les dossiers et les fichiers :
 - Is -Isa /home/users/ total 16

4 drwxr-xr-x 4 root root 4096 sept. 24 13:01. 4 drwxr-xr-x 5 root root 4096 sept. 24 13:00 .. 4 drwxr-xr-x 2 jerry mouse 4096 sept. 24 13:01 jerry 4 drwxr-xr-x 2 tom cat 4096 sept. 24 13:00 tom

- Substitution d'utilisateur « tom » : # su - tom // Où sui-je ? # pwd // Qui suis-je ? # id
- créer un fichier vide (si mon_fichier.txt n'existe pas, sinon modifie sa date - man touch) : # touch my_file.txt # ls -l
- créer un dossier :
 - # mkdir my_dir # ls -l
- visualiser les droit de ce fichier et de ce dossier : # ls -lsa my_*
- Le masque par défaut :

```
# umask --help
// ou
# man umask
# umask
0022
// ou
# umask -S
u=rwx,g=rx,o=rx
// https://fr.wikipedia.org/wiki/Umask
```

- Droits sur les dossiers : 0777 AND NOT 0022 (en binaire)
- Droits sur les fichiers : 0666 AND NOT 0022 (en binaire)
- Paramétrage système
 # grep UMASK /etc/login.defs

// Exemple de modification du mask # umask 0027 // ou # umask u=rwx,g=rx,o= # touch my_new_file.txt; mkdir my_new_dir; ls -lsa my_* 0 -rw-r--r-- 1 tom cat 0 sept. 22 16:47 my_file.txt 0 -rw-r---- 1 tom cat 0 sept. 22 17:00 my_new_file.txt my_dir: total 8 4 drwxr-xr-x 2 tom cat 4096 sept. 22 16:47 . 4 drwx----- 5 tom cat 4096 sept. 22 17:03 .. my_new_dir: total 8 4 drwxr-x--- 2 tom cat 4096 sept. 22 17:00. 4 drwx----- 5 tom cat 4096 sept. 22 17:03 .. // Exemple de modification du mask # umask 0077 // ou # umask u=rwx,g=,o= # touch my_new_file2.txt; mkdir my_new_dir2; ls -lsa my_* 0 -rw-r--r-- 1 tom cat 0 sept. 22 16:47 my_file 0 -rw-r---- 1 tom cat 0 sept. 22 17:00 my_new_file 0 -rw----- 1 tom cat 0 sept. 22 17:03 my_new_file2 my_dir: total 8 4 drwxr-xr-x 2 tom cat 4096 sept. 22 16:47 . 4 drwx----- 5 tom cat 4096 sept. 22 17:03 .. my_new_dir: total 8 4 drwxr-x--- 2 tom cat 4096 sept. 22 17:00. 4 drwx----- 5 tom cat 4096 sept. 22 17:03 .. my_new_dir2: total 8 4 drwx----- 2 tom cat 4096 sept. 22 17:03. 4 drwx----- 5 tom cat 4096 sept. 22 17:03 .. // On remet le masque par défaut : # umask 0022

- Les ACLs POSIX : extension des droits Unix de base <u>https://fr.wikipedia.org/wiki/Access_Control_List</u> <u>https://lea-linux.org/documentations/Gestion_des_ACL</u>
 - Se mettre en super utilisateur :
 # su root
 - Droit actuel sur le dossier racine de « tom » : # ls -lsa /home/users/tom
 - Ne sont pas actives par défaut : # zfs get acltype home/users
 - Activation des ACLs sur une partition : # zfs set acltype=posixacl home/users
 - Installation du gestionnaire des « ACLs » : # aptitude install acl
 - Donner à l'utilisateur « jerry » la permission « rwx » sur le dossier racine de « tom » : # man setfacl # setfacl -m u:jerry:rwx /home/users/tom
 - Donner au groupe « mouse » la permission « rwx » sur le dossier racine de « tom » : # setfacl -m g:mouse:rwx /home/users/tom (+ ACL par defaut)
 - Vérifier les ACLs sur le dossier de « tom » : # man getfacl # ls -lsa /home/users/

4 drwxr-xr-x 4 root root 4096 sept. 24 13:01. 4 drwxr-xr-x 5 root root 4096 sept. 24 13:00.. 4 drwxr-xr-x 2 jerry mouse 4096 sept. 24 13:01 jerry drwxrwx---+ 4 tom cat 4096 sept. 24 13:36 tom

getfacl /home/users/tom

file: home/users/tom
owner: tom
group: cat
user::rwx
user:jerry:rwx
group::--group:mouse:rwx
mask::rwx
other::---

- Pour retirer la dernière permission :
 # setfacl -x g:mouse: /home/users/tom
- Vérifier les ACLs sur le dossier de « tom » : # man getfacl

getfacl /home/users/tom

 Création d'un fichier et d'un dossier par « jerry » dans le dossier racine de « tom » :

```
# su - jerry
# id; pwd;
# cd ~tom
ou
# od /berrys/use
```

cd /home/users/tom

touch fichier_jerry.txt

mkdir dossier_jerry

- Visualiser les droits sur ce fichier et ce dossier : # getfacl *_jerry*
- ACLs par défaut (attention les fichiers existants ne sont pas pris en compte : utilisation de l'option -R):

// En étant "root"

setfacl -d -m u:tom:rwx /home/users/tom

```
# setfacl -d -m u:jerry:rwx /home/users/tom
```

setfacl -d -m q:cat:rwx /home/users/tom

setfacl -d -m g:mouse:rwx /home/users/tom

// En étant jerry

su - jerry

cd ~tom

touch nouveau_fichier_jerry.txt

mkdir nouveau_dossier_jerry

ls -lsa

getfacl *_jerry*

- Au niveau des droits d'un fichier ou dossier un « + » indique la présence d'ACLs...
- Sauvegarde des ACLs de l'ensemble des dossiers et fichier d'un répertoire :

// En étant "root"

getfacl -sR ./ > acl.tom.bck
cat acl.tom.bck
ou plutôt ici
magne acl.toms hale

more acl.tom.bck

- Restauration des ACLs : # setfacl --restore=acl.tom.bck
- Création de nouvelle partition « zfs », une par utilisateur, afin de pouvoir effectuer des

snapshot, send | receive des dossiers racines des utilisateurs :

- installation de l'utilitaire « tree » : # aptitude install -y tree
- Génération de clés pour des connexions « ssh » : // Chiffrement asymétrique de type RSA (gourmand en temps de calcul) => authentification ici // https://fr.wikipedia.org/wiki/Chiffrement_RSA

// Chiffrement symétrique de type AES pour la transmission des données (beaucoup plus rapide que le RSA)

// https://fr.wikipedia.org/wiki/Advanced_Encryption_Standard

- pour « jerry » : // Génération des clés privée / publique : .ssh/id_rsa / .ssh/ id_rsa.pub # ssh-keygen # cd .ssh # ls -lsa id_rsa* # cp id_rsa.pub id_rsa.jerry.pub # cp id_rsa id_rsa.jerry
 copie de la clé publique sous le dossier .ssh de « tom » :
- Copie de la cle publique sous le dossier .ssh de « tom » : (erreur si le dossier .ssh n'existe pas encore chez « tom ») # su - tom
 # su - tom
 - # mkdir .ssh; chmod 700 .ssh; exit
 - # scp id_rsa.jerry.pub tom@localhost:.ssh/
- Se loger sur « tom » :
 - « tom » autorise « jerry » à se connecter à son compte Unix sans mot de passe (i.e.) avec sa clé privée :

cd .ssh

cas ou le fichier « authorized_keys » n'existe pas :

cat id_rsa.jerry.pub > authorized_keys

exit

cas ou il existe déjà (à préférer) :

cat id_rsa.jerry.pub >> authorized_keys
exit

• Se loger « jerry » :

su - jerry

- Login sans mot de passe (i.e. avec notre clé privée) : # ssh tom@localhost # who am i
- Copie d'un fichier dans le dossier racine de « tom » : // création d'un fichier de 10MB # dd if=/dev/zero of=10MB.jerry.data bs=1024 count=10000 # scp 10MB.jerry.data tom@localhost:
- Execution par jerry d'un programme chez tom : # ssh tom@localhost "Is -Isa"
 // On efface chez tom le fichier copier ci-avant # ssh tom@localhost "rm 10MB.jerry.data"

• Sauvegardes & Instantanés (SnapShoots) :

- Dans un terminal sur la machine hôte : # ssh manager@ip_machine_virtuelle
- utilitaire rsync & snapshoot « zfs » :
 - creation d'une partition spécifique à l'utilisateur « manager » : // En étant "root"
 # eu root
 - # su root

zfs create home/users/manager
df

// activer la compression sur ce dossier

zfs set compression=on home/users/manager

- Par le réseau :
 - Modification des paramètres du service ssh pour que "root" puisse se loger à distance : # nano /etc/ssh/sshd_config PermitRootLogin yes

// Prendre en compte cette modification :

/etc/init.d/ssh reload

ou

- # service ssh reload
- ou encore et de préférence
- # systemctl reload sshd.service
- # exit
- # ssh root@VM_IP
- transfert (synchronisation) des données du compte manager vers un autre dossier :
 - # man rsync

rsync -auv /home/manager/ /home/users/manager/

// Via le réseau (avec compression -> option -z)

rsync -auvz /home/manager/ root@localhost:/home/ users/manager/

- # Is -Isa /home/users/manager/
- # usermod -d /home/users/manager manager
- // Détruire l'ancien dossier de manager

cd /home

- # \rm -r manager
- création d'un snapshoot de l'utilisateur "manager" : # zfs snapshot home/users/manager@2021092310:54 # zfs list -t snapshot
- modification dans le dossier de l'utilisateur "manager" : # cd ~manager
 - # dd if=/dev/zero of=1MB.manager.data bs=1024 count=1000
- création d'un nouveau snapshoot de l'utilisateur "manager" : # zfs snapshot home/users/manager@2021092310:56
- on efface par erreur un dossier ou un fichier : # rm 1MB.manager.data
- on récupère ledit fichier par un "rollback" : # zfs rollback -r home/users/manager@2021092310:56 // Attention : on peut perdre des fichiers... # zfs rollback -r home/users/manager@2021092310:54 # ls -lsa
- destruction d'un snapshoot # zfs destroy home/users/manager@2021092310:54

- envoyer et recevoir des snapshoots :
 - En local
 - # zfs create home/backup
 - // Activer la compression
 - # zfs set compression=on home/backup
 - # zfs send home/users/manager@2021092310:54 | zfs receive home/backup/manager
 - Par le réseau : # zfs send home/users/manager@2021092310:54 | ssh root@localhost zfs receive home/backup/manager
- « monter » un snapshoot pour récupérer des dossiers et fichiers spécifiques :
 - # mount -t zfs home/users/manager@2021092310:54 /mnt
 # df
 - # ls -lsa /mnt/*
 - # umount /mnt